ADVERSE CHILD EXPERIENCES: Link Between Exposures and Health

Nadine Burke Harris, MD, MPH
CEO, Center for Youth Wellness
April 10, 2013
The ACEs Study

- Vincent J. Felitti, MD and Robert J. Anda, MD, MS
- Asked 26,000 adults at Kaiser, San Diego’s Dept of Preventive Medicine.
- 17,421 participated in the study.
- Participants completed a questionnaire.
ACEs Criteria

1. Recurrent physical abuse
2. Recurrent emotional abuse
3. Contact sexual abuse
4. An alcohol or drug abuser in the household
5. An incarcerated household member
6. Someone who was chronically depressed, institutionalized, or suicidal
7. Mother treated violently
8. One or no parents, or parents divorced.
9. Emotional or physical neglect
Relative Risk of disease for ACEs ≥ 4

- Hepatitis: 240%
- STD: 250%
- COPD: 260%
- Depression: 460%
- Suicidality: 1,220%
Stress Response

- Activation of the HPA Axis - release of ACTH, adrenaline and cortisol
- Increase in centrally controlled peripheral sympathetic nervous system activity
- Activation of nor-adrenaline throughout the midbrain and forebrain including the cortex
Multi-systemic Impacts

- **Neurologic:**
 - HPA Axis Dysregulation
 - Reward center dysregulation
 - Hippocampal neurotoxicity
 - Neurotransmitter and receptor dysregulation

- **Immunologic:**
 - Increased inflammatory mediators and markers of inflammation such as interleukins, TNF alpha, IFN-γ
Multi-systemic Impacts

- **Epigenetic**
 - Changes in the way DNA is read and expressed
 - Changes in the way the brain responds to stress

- **Endocrine**
 - Long-term changes in ACTH, cortisol and adrenaline levels.
Updated Mechanism

![Pyramid Diagram]

- Death
- Conception

- Early Death
- Disease, Disability, and Social Problems
- Adoption of Health-risk Behaviors
- Social, Emotional, and Cognitive Impairment
- Disrupted Neurodevelopment
- Adverse Childhood Experiences

Mechanisms by Which Adverse Childhood Experiences
<table>
<thead>
<tr>
<th>Positive Stress</th>
<th>Tolerable Stress</th>
<th>Toxic Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Normal and essential part of healthy development</td>
<td>- Body’s alert systems activated to a greater degree</td>
<td>- Occurs with strong, frequent or prolonged adversity</td>
</tr>
<tr>
<td>- Brief increases in heart rate and blood pressure</td>
<td>- Activation is time-limited and buffered by caring adult relationships.</td>
<td>- Disrupts brain architecture and other organ systems</td>
</tr>
<tr>
<td>- Mild elevations in hormonal levels</td>
<td>- Brain and organs recover</td>
<td>- Increased risk of stress-related disease and cognitive impairment</td>
</tr>
<tr>
<td>- Example: Tough test at school. Playoff game.</td>
<td>- Example: Death of a loved one, divorce, natural disaster</td>
<td>- Example: abuse, neglect, caregiver substance dependence or mental illness</td>
</tr>
</tbody>
</table>

Intense, prolonged, repeated, unaddressed

Social-Emotional buffering, Parental Resilience, Early Detection, Effective Intervention
CPMC Bayview Child Health Center
<table>
<thead>
<tr>
<th>ACEs ≥ 1</th>
<th>67.2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEs ≥ 4</td>
<td>12%</td>
</tr>
<tr>
<td>ACEs ≥ 4 and BMI ≥ 85%</td>
<td>OR: 2.0</td>
</tr>
<tr>
<td>ACEs ≥ 4 and learning/beh probs</td>
<td>OR: 32.6</td>
</tr>
</tbody>
</table>
Effect of ACEs on Educational Outcomes

Figure 2: Learning/Behavior Problems by ACEs Score

- ACEs=0: 97% NO, 3% YES
- ACEs=1-3: 79.3% NO, 20.7% YES
- ACEs>=4: 48.8% NO, 51.2% YES
SCOPE OF THE CHALLENGE

- Impacts are pervasive and long-lasting
 - Development
 - Physical and Mental Health
 - Social and Educational impacts
 - Economic impacts
- Prevalence is high
- Strong evidence relating the risk
- Early intervention improves outcomes

PUBLIC HEALTH APPROACH IS NECESSARY
What would it take?

- Align the activities of NIH, CDC, IOM, MCHB, ACF and CMS to provide the educational, financial, and logistical/administrative/systems support for:
 - Basic science and translational research for the development of evidence-based practices, and
 - Training for clinicians and researchers to develop and implement effective interventions.
What would it take?

- Develop pediatric medical homes that are integrated both vertically and horizontally with the ability to provide:
 - a) universal preventions to toxic stress,
 - b) targeted, evidence-based interventions for those at risk for toxic stress, and
 - c) evidence-based treatments for those symptomatic due to toxic stress)
What We Can Do Now!

- **Start Early!**
 - Identify kids exposed to ACEs through routine screenings and establish prevention programs in healthcare, schools and youth-serving organizations

- **Focus on early childhood and early adolescence**
 - Critical developmental stages

- **Invest in programs that heal**
 - Don’t spend money on programs that don’t support the health and development of our kids – punitive school discipline/juvenile justice
What We Can Do Now!

- Change Public Policy
 - Support prevention and healing using policy to prioritize funding for early detection and effective intervention

- Make ACEs a public issue.
 - Educate our community about the impact and the role each of us can play.
Thank You!
Resources

- Centers for Disease Control and Prevention
 - http://www.cdc.gov/ace/index.htm

- UCSF Child Trauma Research Program
 - http://childtrauma.ucsf.edu/

- Lucile Packard Early Life Stress Program

- National Child Traumatic Stress Network
 - http://www.nctsn.org/
References

- “The Relationship of Adverse Childhood Experiences to Adult Health: Turning gold into lead” Felitti, VJ
- “Insights Into Causal Pathways for Ischemic Heart Disease: Adverse Childhood Experiences Study” Dong et al, Circulation. 2004;110:1761-1776
- “Adrenocorticotropic Hormone and Cortisol Plasma Levels Directly Correlate with Childhood Neglect and Depression Measures in Addicted Patients” Gerra et al, Addiction Biology, 13:95-104
References

- Childhood maltreatment predicts adult inflammation in a life-course study Danese et al, PNAS, January 2007, 1319-1324
- Effect of buddhist meditation on serum cortisol and total protein levels, blood pressure, pulse rate, lung volume and reaction time. Sudsuang et al, Physiology & Behavior, Volume 50, Issue 3 September 1991, Pages 543-548